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1 Solution of the linear compartmental model

1.1 Model definition

Consider the continuous-time Markov chain X = (X(t)|t ∈ R
+) with state space S = {i}mi=1, m ∈ N,

and rates γ = (γ1, . . . , γm−1), γi ∈ R
+,∀ i ∈ S \ {m}. For convenience we will set γm = 0.

1 2 3 · · · m− 1 m

γm−1γm−2γ3γ2γ1

This has the following m×m generator matrix

M =












−γ1

γ1 −γ2 0

γ2
. . .
. . . −γm−1

0 γm−1 0












, (1)

which in component form reads

Mij =

{

γj(δi−1,j − δij) if j 6= m ,

0 otherwise.
(2)

X has an absorbing state at i = m, a unique stationary distribution π∗ such that [π∗]i = δi,m, but it
is not irreducible, ergodic or reversible (since pij(t) = 0,∀ i ≤ j ∈ S).
We now try to solve the system

dπ

dt
= Mπ, πi(0) = δi1 , (3)

for different relationships between the rates γ.

1.2 Distinct rates

The solution to (3) is simpler if all of the rates are distinct, i.e. if γi 6= γj ∀ i 6= j ∈ S \ {m}. We will
use two different methods to solve this system.

1.2.1 Solution via eigenvalue decomposition

Here we start by finding the eigenvalues of M, we solve the characteristic equation

det(M− λ1) = 0 (4)

By noting that the matrix M − λ1 is lower triangular, we see that its determinant is the product of
its diagonal entries and so

−λ

N∏

i=1

(−γi − λ) = 0, =⇒ λ = 0,−γ1,−γ2, . . . ,−γm−1. (5)
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The eigenvectors equation can then be written in component form as

i∑

k=1

Mik[vj ]k = −γj[vj ]i , ∀ i, j ∈ S . (6)

Now define a matrix A whose i-th column is the i-th right eigenvector of M so that M = AΛA−1,
where Λ is a diagonal matrix with i-th diagonal element equal to γi. Substituting for Mij as in (2)
and rearranging, we have

(γi − γj)Aij = γi−1Ai−1,j (7)

and so since γi−1 6= 0, Aij = 0 for i < j. If we set Aii = 1, then by induction we have

Aij = [vj]i =







i−1∏

k=j

γk
γk+1 − γj

i > j

1 if i = j ,
0 otherwise.

(8)

and so the matrix A is also lower triangular. We then write the solution to (3) as

π(t) = eMtπ(0) = AeΛtA−1π(0) = AeΛtc , (9)

where c is a vector obeying Ac = π(0). Clearly, c1 = 1 and for i 6= 1

i−1∑

j=1

cj

i−1∏

k=j

γk
γk+1 − γj

+ ci = 0 . (10)

Let us consider the possible solution

ci =







1 for i = 1 ,
i−1∏

j=1

γj
γj − γi

for i 6= 1 .
(11)

Then for i 6= 1, (10) becomes

i−1∑

j=1

j−1
∏

k=1

γk
γk − γj

i−1∏

k=j

γk
γk+1 − γj

+

i−1∏

j=1

γj
γj − γi

= 0

=⇒







i−1∑

j=1

i∏

k=1
k 6=j

1

γk − γj
+

i−1∏

k=1

1

γk − γi







i−1∏

j=1

γj = 0 (12)

and so
i∑

j=1

i∏

k=1
k 6=j

1

γk − γj
= 0, since γi 6= 0,∀ i ∈ S \ {m}. (13)

Now we can show that expression (13) holds for all γi 6= γj ∈ R, i 6= j.

Proof. Let there be a set {γi}ni=1 s.t. γi ∈ C, n ∈ N and γi 6= γj ∀ i 6= j. Now consider the expression

Pi(x) =
n∏

j=1
j 6=i

(γj − x)
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Using the formula for partial fraction decomposition

1

Pi(x)
=

n∑

j=1
j 6=i

1

P ′
i (γj)

1

x− γj

we have that

n∏

j=1
j 6=i

1

γj − γi
=

n∑

j=1
j 6=i

1

P ′
i (γj)

1

γi − γj

= −
n∑

j=1
j 6=i

1

γi − γj

n∏

k=1
k 6=i,j

1

γk − γj

= −
n∑

j=1
j 6=i

n∏

k=1
k 6=j

1

γk − γj

=⇒
n∑

j=1

n∏

k=1
k 6=j

1

γk − γj
= 0

Combining this with the eigenvectors/values of M we can substitute into (9) to give

πi(t) =
i∑

j=1

Aijcje
−γjt

=







e−γ1t for i = 1 ,
i−1∏

k=1

γk ×
i∑

j=1

e−γj t
i∏

k=1
k 6=j

1

γk − γj
for i 6= 1 .

(14)

1.2.2 Solution via Laplace transform

For the more general case, there are benefits to a Laplace transform approach, which we will introduce
here. We define the Laplace transform of a function f : R+ → R

d, t 7→ f(t) as L̂ {f} : C → R
d,

s 7→ f̃(s) such that

L̂ {f}(s) := f̃(s) =

∫ ∞

0
f(t)e−stdt (15)

Laplace transforming (3) then gives
sπ̃ − π(0) = Qπ̃ . (16)

If s is not an eigenvalue of Q, then the matrix s1−Q is invertible and

π̃ = (s1−Q)−1π(0) , so π(t) = L̂
−1{(s1−Q)−1π(0)}(t) . (17)

We can then calculate the inverse Laplace transform using the residue theorem. Considering the
explicit form of (17) for our model, if we let B(s) = s1 − Q, where s 6= −γi ∀ i ∈ S, then B is
invertible and we need to find B−1π(0) where [π(0)]i = δi1, or in component form

[B−1π(0)]i =
m∑

j=1

B−1
ij πj(0) = B−1

i1 (18)
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Using BB−1 = 1, and noting that B is lower triangular, we have that

i∑

j=1

BijB
−1
j1 = δi1 (19)

For i = 1: B−1
11 = 1/B11 = (s+ γ1)

−1. For i 6= 1:

i∑

j=1

BijB
−1
j1 = 0

=⇒
i∑

j=1

(−γjδi−1,j + (s+ γj)δij)B
−1
j1 = 0

=⇒ B−1
i1 =

γi−1

s+ γi
B−1

i−1,1 =

i∏

k=2

γk−1

s+ γk
B−1

11 ,

and so

[(s1−Q)−1π(0)]i =







1

s+ γ1
i = 1 ,

i−1∏

k=1

γk ×
i∏

k=1

1

s+ γk
i 6= 1 .

(20)

Then finding πi(t) reduces to calculating L̂
−1{f̃i(s)} where f̃i(s) =

i∏

k=1

1

s+ γk
. Since γi 6= γj ∀ i 6= j,

all the poles s = −γi of f̃ are order 1, and so using the residue theorem we have

L̂ {f̃i(s)}(t) =
i∑

j=1

Res[f̃i(s)e
st,−γj ]

=
i∑

j=1

lim
s→−γj

(s+ γj)e
st

i∏

k=1

1

s+ γk

=

i∑

j=1

e−γjt
i∏

k=1
k 6=j

1

γk − γj
, i 6= 1 or e−γ1t, i = 1 , (21)

and so finally

πi(t) = L̂
−1{[(s1−Q)−1π(0)]i} =







e−γ1t i = 1 ,
i−1∏

k=1

γk ×
i∑

j=1

e−γjt
i∏

k=1
k 6=j

1

γk − γj
i 6= 1 , (22)

which is equivalent to (14).

1.2.3 Derivatives

Lets now take derivatives with respect to the model parameters {γi}. This can be most easily done in
the Laplace domain since we can use the fact that

∂i L̂ {f}(s) = L̂ {∂if}(s) , where ∂i := ∂/∂γi , (23)
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and so
∂if(t) = L̂

−1{∂i L̂ {f}}(t) . (24)

If we let π̃i(s) = [(s1−Q)−1π(0)]i then

∂iπ̃j(s) =







π̃j(s)

γi
− π̃j(s)

s+ γi
i < j ,

− π̃i(s)

s+ γi
i = j ,

0 i > j .

(25)

Using the convolution theorem for Laplace transforms, we have

L̂
−1
{
π̃j(s)

γi
− π̃j(s)

s+ γi

}

=
πj(t)

γi
−
∫ t

0
πj(u)e

−γi(t−u)du

=

j−1
∏

k=1

γk ×







j
∑

n=1
n 6=i

γie
−γit − γne

−γnt

γi(γi − γn)

j
∏

k=1
k 6=n

1

γk − γn
+

1− γit

γi
e−γit

j
∏

k=1
k 6=i

1

γk − γi







=

j−1
∏

k=1

γk ×
j
∑

n=1
n 6=i

(
γn(e

−γit − e−γnt)

γi(γi − γn)
+ te−γit

) j
∏

k=1
k 6=n

1

γk − γn

where we used the relationship proved in §1.2.1. Thus

∂iπj(t) =







−te−γ1t i = j = 1 ,
i−1∏

k=1

γk ×
i−1∑

n=1

(
e−γit − e−γnt

γi − γn
+ te−γit

) i∏

k=1
k 6=n

1

γk − γn
i = j 6= 1 ,

j−1
∏

k=1

γk ×
j
∑

n=1
n 6=i

(
γn(e

−γit − e−γnt)

γi(γi − γn)
+ te−γit

) j
∏

k=1
k 6=n

1

γk − γn
i < j ,

0 i > j ,

(26)

which can be checked by computing the derivative directly from (14).

1.3 Arbitrary rates

Consider a general, pure birth chain with m = N + 1 states {I}N+1
I=1 , and M distinct parameters

{γi}Mi=1, defined by the following (N +1)× (N +1) generator matrix Q, where γi 6= γj ∈ R
+ ∀ i 6= j ∈
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{1, 2, . . . ,M}, and ∑M
i=1 ni = N + 1.

n1
︷ ︸︸ ︷

n2
︷ ︸︸ ︷

∑M−1

i=3
ni

︷ ︸︸ ︷
nM

︷ ︸︸ ︷

Q =
































−γ1

γ1
. . .
. . . −γ1

γ1 −γ2

γ2
. . . 0
. . . −γ2

γ2
. . .
. . .

. . .

0 . . . −γM

γM
. . .
. . . −γM

γM 0
































(27)

1.3.1 Solution

Let us find solutions to (3) using the Laplace transform method. Again defining B(s) = s1−Q, where
s 6= −γi ∀ i ∈ {1, . . . ,M}, and following the same procedure in §1.2.2, we can write down

[(s1−Q)−1π(0)]I =







(
γ1

s+ γ1

)kI

γ−1
1 I 6= N + 1, mI = 1 ,

(
γmI

s+ γmI

)kI

γ−1
mI

mI−1∏

j=1

(
γj

s+ γj

)nj

I 6= N + 1, mI 6= 1 ,

1

s

M∏

j=1

(
γj

s+ γj

)nj

I = N + 1 ,

where mI ∈ {1, 2, . . . ,M} and kI ∈ {1, 2, . . . , nmI
} are counting variables defined by the relation-

ship
mI−1
∑

j=0

nj + kI = I , n0 := 0 . (28)
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Then to calculate πI(t), we notice that f̃(s) = (s + γmI
)−kI

∏mI−1
j=1 (s + γj)

−nj has poles at s =
−γ1, . . . ,−γmI−1,−γmI

, of order n = n1, . . . , nmI−1, kI respectively, and so

L̂
−1{F (s)}(t) =

mI∑

j=1

Res[f̃(s)est,−γj]

=

mI−1∑

j=1

1

(nj − 1)!
lim

s→−γj

dnj−1

dsnj−1

(

est
(s+ γj)

nj

(s+ γmI
)kI

mI−1∏

k=1

(s+ γk)
−nk

)

+
1

(kI − 1)!
lim

s→−γmI

dkI−1

dskI−1

(

est
(s+ γmI

)kI

(s+ γmI
)kI

mI−1∏

k=1

(s+ γk)
−nk

)

=

mI−1∑

j=1

1

(nj − 1)!
lim

s→−γj

dnj−1

dsnj−1







est

(s+ γmI
)kI

mI−1∏

k=1
k 6=j

(s+ γk)
−nk







+
1

(kI − 1)!
lim

s→−γmI

dkI−1

dskI−1

(

est
mI−1
∏

k=1

(s+ γk)
−nk

)

. (29)

Now consider function g(s) such that

est(s+ γmI
)−kI

mI−1∏

k=1
k 6=j

(s+ γk)
−nk = exp






st−

mI−1∑

k=1
k 6=j

nk ln(s+ γk)− kI ln(s + γmI
)







=: eg(s) , (30)

and using a simplified form of Faá di Bruno’s formula

dp

dsp
eg(s) = eg(s)Bp

(

g′(s), g′′(s), . . . , g(p)(s)
)

, (31)

where Bp (x1, x2, . . . , xp) is the p
th-complete Bell polynomial. If we define a p×pmatrixMp(x1, . . . , xp)

such that

[Mp]ij =







(
p−i
j−i

)
xj−i+1 i ≤ j ,

−1 i = j + 1 ,
0 otherwise,

(32)

then we can use the identity

Bp (x1, x2, . . . , xp) = detMp(x1, x2, . . . , xp) (33)

and so finally

L̂
−1







est

(s+ γmI
)kI

mI−1∏

j=1

(s+ γj)
−nj






=

mI−1∑

j=1

e−γj t detHI,j(t)

(γmI
− γj)kI (nj − 1)!

mI−1∏

k=0
k 6=j

(γk − γj)
−nk

+
e−γmI

t det H̃I(t)

(kI − 1)!

mI−1∏

k=1

(γk − γmI
)−nk . (34)

Here HI,j(t) = 1 if nj = 1, while if nj > 1, HI,j(t) is a (nj − 1) × (nj − 1) matrix defined by

[HI,j]pq(t) =







(nj − 1− p)!

(nj − 1− q)!







mI−1
∑

k=0
k 6=j

nk

(γj − γk)q−p+1
+

kI
(γj − γmI

)q−p+1







+ tδpq p ≤ q ,

−1 p = q + 1 ,
0 otherwise.
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Also, H̃(t) = 1 if kI = 1, while if kI > 1, H̃(t) is a (kI − 1)× (kI − 1) matrix defined by

[H̃I ]pq(t) =







(kI − 1− p)!

(kI − 1− q)!

mI−1∑

k=1

nk

(γmI
− γk)q−p+1

+ tδpq p ≤ q ,

−1 p = q + 1 ,
0 otherwise.

(35)

This gives the overall solution

πI(t) =







e−γ1t
(γ1t)

kI−1

(kI − 1)!
I 6= N + 1, mI = 1 ,

mI−1∑

j=1

γkI−1
mI

γ
nj

j e−γjt detHI,j(t)

(γmI
− γj)kI (nj − 1)!

mI−1∏

k=0
k 6=j

(
γk

γk − γj

)nk

+
γkI−1
mI

e−γmI
t det H̃I(t)

(kI − 1)!

mI−1
∏

k=1

(
γk

γk − γmI

)nk

I 6= N + 1, mI 6= 1 ,

M∏

k=1

γnk

k ×
M+1∑

j=1

e−γjt detHN+1,j(t)

(nj − 1)!

M+1∏

k=1
k 6=j

(
1

γk − γj

)nk

I = N + 1 ,

(36)

where we define γ0 := 1, γM+1 := 0, nM+1 := 1, mN+1 := M + 2 and kN+1 := 0 for simplicity of
notation.

1.3.2 Derivatives

An analytic expression also allows us to calculate derivatives in a similar way to §1.2.3. Taking a
derivative of the Laplace transform, we get

∂rπ̃I =







nr

γr
π̃I −

nr

s+ γr
π̃I r < mI ,

kI − 1

γmI

π̃I −
kI

s+ γmI

π̃I r = mI ,

0 otherwise.

So we need to calculate expressions of the form L̂
−1{(s+γr)

−1π̃j(s)}. Rather than use the convolution
theorem as before, here we apply the residue theorem multiple times. The first application gives

L̂
−1
{

π̃I
s+ γr

}

=
γkI−1
mI

e−γrt det K̃I,r(t)

(γmI
− γr)kInr!

mI−1∏

k=1
k 6=r

(
γk

γk − γr

)nk

+

mI−1
∑

j=1
j 6=r

γkI−1
mI

γ
nj

j e−γjt det(HI,j(t) +KI,r(nj))

(γmI
− γj)kI (γr − γj)(nj − 1)!

mI−1
∏

k=0
k 6=j

(
γk

γk − γj

)nk

+
γkI−1
mI

e−γmI
t det(H̃I(t) +KI,r(kI))

(γr − γmI
)(kI − 1)!

mI−1
∏

k=1

(
γk

γk − γmI

)nk

, (37)

where K̃I,r(t) is a nr × nr matrix with components

[K̃I,r]pq(t) =







(nr − p)!

(nr − q)!







mI−1
∑

k=0
k 6=r

nk

(γr − γk)q−p+1
+

kI
(γr − γmI

)q−p+1







+ tδpq p ≤ q ,

−1 p = q + 1 ,
0 otherwisem
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and where KI,r(a) = 0 if a = 1 or if a > 1 KI,r(a) is a (a− 1)× (a− 1) matrix with components

[KI,r]pq(nj) =







(nj − 1− p)!

(nj − 1− q)!

1

(γj − γr)q−p+1
p ≤ q ,

0 otherwise,

and

[KI,r]pq(kI) =







(kI − 1− p)!

(kI − 1− q)!

1

(γmI
− γr)q−p+1

p ≤ q ,

0 otherwise.

The second application of the residue theorem gives

L̂
−1
{

π̃I
s+ γmI

}

=

mI−1∑

j=1

γkI−1
mI

γ
nj

j e−γjt det(HI,j(t) +KI,mI
(nj))

(γmI
− γj)kI+1(nj − 1)!

mI−1∏

k=0
k 6=j

(
γk

γk − γj

)nk

+
γkI−1
mI

e−γmI
t det H̃I1(t)

kI !

mI−1
∏

k=1

(
γk

γk − γmI

)nk

, (38)

where H̃I1(t) is a kI × kI matrix defined by

[H̃I1]pq(t) =







(kI − p)!

(kI − q)!

mI−1∑

k=1

nk

(γmI
− γk)q−p+1

+ tδpq p ≤ q ,

−1 p = q + 1 ,
0 otherwise.

(39)
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This gives the full final expression as

∂rπI(t) =







−tπI(t) + tπI−1(t) r = mI = 1, I 6= N + 1 ,

kI − 1

γmI

πI(t)− kIγ
kI−1
mI

mI−1∏

k=1

γnk

k ×






mI−1
∑

j=1

e−γjt det(HI,j(t) +KI,mI
(nj))

(γmI
− γj)kI+1(nj − 1)!

mI−1
∏

k=0
k 6=j

(
1

γk − γj

)nk

+
e−γmI

t det H̃I1(t)

kI !

mI−1
∏

k=1

(
1

γk − γmI

)nk

}

r = mI 6= 1, I 6= N + 1 ,

nr

γr
πI(t)− nrkIγ

kI−1
mI

mI−1
∏

k=1

γnk

k ×






e−γrt det K̃I,r(t)

(γmI
− γr)kInr!

mI−1∏

k=1
k 6=r

(
1

γk − γr

)nk

+

mI−1∑

j=1
j 6=r

e−γjt det(HI,j(t) +KI,r(nj))

(γmI
− γj)kI (γr − γj)(nj − 1)!

mI−1∏

k=0
k 6=j

(
1

γk − γj

)nk

+
e−γmI

t det(H̃I(t) +KI,r(kI))

(γr − γmI
)(kI − 1)!

mI−1
∏

k=1

(
1

γk − γmI

)nk

}

r < mI , I 6= N + 1 ,

nr

γr
πN+1(t)− nr

M+1∏

k=1

γnk

k ×






e−γrt
det K̃N+1,r(t)

nr!

M+1∏

k=1
k 6=r

(
1

γk − γr

)nk

+
M+1∑

j=1
j 6=r

e−γj t
det(HN+1,j(t) +KN+1,r(nj))

(γr − γj)(nj − 1)!

M+1∏

k=0
k 6=j

(
1

γk − γj

)nk







I = N + 1 ,

0 otherwise.
(40)

2 Metric for the shedding models

2.1 Underlying Fisher-Rao metric

We first note the straightforwardly-obtained result that if φ is the pdf of a normal distribution with
mean µ(θ) and standard deviation σ(θ), then the Fisher-Rao metric will contain terms like

ga,b = Eφ[∂aln(φ)∂bln(φ)] =
1

σ2
∂aµ∂bµ+

2

σ2
∂aσ∂bσ . (41)

We now consider how this metric is calculated for the four different shedding models considered in the
main paper.
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2.2 The SIR model

For the simple SIR model defined in the main paper (Eq. (14)) we have

µ(τ, γ) = τe−γ , σ(τ, γ) = σ . (42)

The derivatives are therefore

∂τµ = e−γ , ∂γµ = −τe−γ , ∂aσ = 0 . (43)

Substituting into (41) gives the Fisher-Rao metric as having the following form:

G =
e−2γ

σ2

(
1 −τ
−τ τ2

)

. (44)

This has the issue that there is full unidentifiability, reflected in the fact that this metric attributes
zero distance to travel along constant-τe−γ curves. Our solution to this problem is to add an amount
of distance in these directions to give full metric

Gα =
e−2γ

σ2

{(
1 −τ
−τ τ2

)

+ α

(
τ2 −τ
−τ 1

)}

, (45)

where α is a constant parameterising the amount of distance added.

While it was not necessary to do this for any of our other models, we suggest that as a general
methodological point if an initial metric took a form similar to (45), but for very small α that caused
potential numerical issues with forming its inverse, then it may be advisable to increase the value of
α by hand.

2.3 Influenza and Ebola

Here our likelihood is given by a product of normal probability density functions

L =
∏

t∈T

φ(µ(t), σ(t)) , (46)

where

µ(t) = τ

m∑

i=1

πi(t,γ) =: τπ(t) , σ(t) = σt is given in data. (47)

Given the results above for πi(t), we can then write down that for influenza the metric has compo-
nents

gτ,τ = 0 , gi,j =
∑

t∈T

τ

σ2
t

∂iπ(t)∂jπ(t) , gτ,i =
∑

t∈T

π(t)

σ2
t

∂iπ(t) . (48)

For Ebola, we have to consider both high- and low-viraemic pathways of infection separately, but
otherwise the metric is

2.4 Norovirus

Our norovirus model has the same form as (46) except that σ(t) = σ is a model parameter.

Since for these data we have a large number of approximately uniformly-distributed time points, we
use integrals rather than sums over time for computational efficiency leading to expressions

gi,j =

∫ ∞

0

τ

σ2
∂iπ(t)∂jπ(t)dt , gτ,i =

∫ ∞

0

π(t)

σ2
∂iπ(t)dt ,

gσ,σ =
2

σ2
, gτ,τ = gσ,a6=σ = 0 ,

(49)

which can be straightforwardly computed from the results above.
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2.5 Other contributions to the metric

We can include the contribution of a rate-ρa exponential prior on θa through performing calculations
for uniform / improper priors and then making the transformation

∂aL → ∂aL − ρa . (50)

For SMMALA the metrics we have considered so far are all that is required, and have the primary
benefit of introducing local second-order derivative information into the MCMC algorithm, but for
WLMC we make additional use of the possibilities for reduction of global distances possible in a
geometric approach.

3 The WLMC algorithm

3.1 Lagrangian Monte Carlo (LMC)

The ‘HMC’ dynamics introduced in the main paper can be generalised to a geometric approach in
two ways. The ‘RMHMC’ approach of [2] involves Hamiltonian dynamics with a discretized integra-
tor, the generalized leapfrog method [6, 2], which requires significant numerical effort, in particular
fixed-point iterations, to solve implicit equations. This step is potentially computational intensive
(repeated matrix inversion of G(θ) involves O(D2.373) operations in dimension D), and can sometimes
be numerically unstable [3].

To address this issue, Lan et al. [4] propose an explicit integrator for geometric MCMC by using the
following Lagrangian dynamics:

dθ

dt
= v ,

dv

dt
= G(θ)−1∂L − vTΓ(θ)v , (51)

where v(0) := G(θ(0))−1p(0) ∼ N (0,G(θ(0))−1), and Γ(θ) are Christoffel Symbol of the second kind
whose (i, j, k)-th element is Γk

ij =
1
2g

km(∂igmj + ∂jgim − ∂mgij) with gkm being the (k,m)-th element

of G(θ)−1.

The following explicit integrator can then be derived for these dynamics:

v(ℓ+ 1

2
) =

[

I+
ε

2
Ω(θ(ℓ),v(ℓ)))

]−1 [

v(ℓ) − ε

2
G(θ(ℓ))−1∇θφ(θ

(ℓ))
]

, (52)

θ(ℓ+1) = θ(ℓ) + εv(ℓ+ 1

2
) , (53)

v(ℓ+1) =
[

I+
ε

2
Ω(θ(ℓ+1),v(ℓ+ 1

2
)))
]−1 [

v(ℓ+ 1

2
) − ε

2
G(θ(ℓ+1))−1∇θφ(θ

(ℓ+1))
]

, (54)

where Ω(θ(ℓ),v(ℓ)))kj := (v(ℓ))iΓ(θ(ℓ))kij . Such an integrator is time reversible but not volume preserv-
ing. The acceptance probability is adjusted to have the detailed balance condition hold [4]:

α = min

{

1, exp(−E(z(L+1)) + E(z(1)))

∣
∣
∣
∣
∣

dz(L+1)

dz(1)

∣
∣
∣
∣
∣

}

, (55)

where the Jacobian determinant is
∣
∣
∣
∣
∣

dz(ℓ+1)

dz(ℓ)

∣
∣
∣
∣
∣
=

det(I− ε/2Ω(θ(ℓ+1),v(ℓ+1))) det(I− ε/2Ω(θ(ℓ),v(ℓ+1/2)))

det(I+ ε/2Ω(θ(ℓ+1),v(ℓ+1/2))) det(I+ ε/2Ω(θ(ℓ),v(ℓ)))
, (56)

and E(z) is the energy for the Lagrangian dynamics defined as:

E(θ,p) = − log π(θ|D)− 1

2
log detG(θ) +

1

2
vTG(θ)v . (57)
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The resulting algorithm, Lagrangian Monte Carlo (LMC) is a valid exact sampler and has the same
strength in exploring complex geometry as RHMC does. LMC is sometimes more efficient and stable
than RHMC – for more details see [3, 4].

3.2 WLMC

When the target distribution is multi-modal, derivative-based and geometric algorithms tend to fail
as they are easily trapped in some of the modes without visiting all of them. Making proposals
by numerically simulating Hamiltonian dynamics, the sampler has difficulty in passing through low
probability regions [7]. Compared to HMC, the geometric RHMC and LMC methods perform even
worse in relation to this issue because they are more adapted to the local geometry and more likely
to be trapped in one mode.

To overcome this issue, some kind of global knowledge of the distribution needs to learned and
incorporated. Lan et al. [5] proposed the idea of using wormholes for these geometric algorithms
(HMC/RHMC/LMC) to work on multi-modal distributions. The proposed method comes in 2 parts:
a distance-shortening metric and a mode-jumping mechanism.

3.3 Wormhole Metric

Let θ̂1 and θ̂2 be two modes of the target distribution. We define a straight line segment, vW := θ̂2−θ̂1,
and refer to a small neighborhood (tube) of the line segment as a wormhole. Next, we define a wormhole

metric, GW (θ), in the vicinity of the wormhole. For a pair of tangent vectors u,w at θ, wormhole

metric GW is defined as follows

G∗
W (u,w) := 〈u− 〈u,v∗

W 〉v∗
W ,w − 〈w,v∗

W 〉v∗
W 〉 = uT[I− v∗

W (v∗
W )T]w , (58)

GW = G∗
W + εv∗

W (v∗
W )T = I− (1− ε)v∗

W (v∗
W )T , (59)

where v∗
W = vW /‖vW ‖, and 0 < ε ≪ 1 is a small positive number. To see that GW in fact shortens

the distance between θ̂1 and θ̂2, consider a simple case of a straight line: θ(t) = θ̂1 + vW t, t ∈ [0, 1].
In this case, the distance under GW is

dist(θ̂1, θ̂2) =

∫ 1

0

√

vT

WGWvWdt =
√
ε‖vW ‖ ≪ ‖vW ‖ ,

which is much smaller than the Euclidean distance.

Next, we define the overall metric, G, for the whole parameter space of θ as a weighted sum of the
base metric G0 and the wormhole metric GW ,

G(θ) = (1−m(θ))G0(θ) +m(θ)GW , (60)

where m(θ) ∈ (0, 1) is a mollifying function designed to make the wormhole metric GW influential in
the vicinity of the wormhole only.

3.4 Wormhole Network

For more than two modes, the above method alone could suffer from two potential shortcomings in
higher dimensions. First, the effect of wormhole metric could diminish quickly as the sampler leaves
one mode and moves towards another mode. Secondly, such a mechanism, which modifies the dynamics
in the existing parameter space, could interfere with the native dynamics in the neighborhood of a
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wormhole, possibly preventing the sampler from properly exploring areas around the modes as well as
some low probability regions.

To address the first issue, we add an external vector field to enforce the movement between modes.
More specifically, we define a vector field, f(θ,v), in terms of the position parameter θ and the velocity
vector v = G(θ)−1p as follows:

f(θ,v) := exp{−V (θ)/(DF )}U(θ)〈v,v∗
W 〉v∗

W = m(θ)〈v,v∗
W 〉v∗

W , (61)

with mollifier m(θ) := exp{−V (θ)/(DF )}, where D is the dimension, F > 0 is the influence factor,
and V (θ) is a vicinity function indicating the Euclidean distance from the line segment vW ,

V (θ) := 〈θ − θ̂1,θ − θ̂2〉+ |〈θ − θ̂1,v
∗
W 〉||〈θ − θ̂2,v

∗
W 〉| . (62)

After adding the vector field, we modify the Hamiltonian/Lagrangian dynamics governing the evolution
of θ as follows:

θ̇ = v + f(θ,v) . (63)

To address the second issue, we allow the wormholes to pass through an extra auxiliary dimension
to avoid their interference with the existing dynamics in the given parameter space. In particular
we introduce an auxiliary variable θD+1 ∼ N (0, 1) corresponding to an auxiliary dimension. We use
θ̃ := (θ, θD+1) to denote the position parameters in the resulting D + 1 dimensional space MD × R.
θD+1 can be viewed as random noise independent of θ and contributes 1

2θ
2
D+1 to the total potential

energy. Correspondingly, we augment velocity v with one extra dimension, denoted as ṽ := (v, vD+1).
At the end of the sampling, we project θ̃ to the original parameter space and discard θD+1.

We refer to MD×{−h} as the real world, and call MD×{+h} the mirror world. Here, h is half of the
distance between the two worlds, and it should be in the same scale as the average distance between
the modes. For most of the examples discussed here, we set h = 1. Figure S1 illustrates how the two
worlds are connected by networks of wormholes.

One can refer to [5] for full algorithmic details of Wormhole HMC/LMC, including the case where the
modes are initially unknown.
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4 Supplementary figure
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Figure S1: Illustrating a wormhole network connecting the real world to the mirror world (h = 1). As
an example, the cylinder shows a wormhole connecting mode 5 in the real world to its mirror image.
The dashed lines show two sets of wormholes. The red lines shows the wormholes when the sampler
is close to mode 1 in the real world, and the magenta lines show the wormholes when the sampler is
close to mode 5 in the mirror world.

5 Mathematica code

We provide the following code sample provides as an example of how closed-form expressions for
quantities of interest for the influenza model can be obtained using computer algebra.

(* Set up the SEEIIR equations *)

seeiirEqs = {

e1’[t] ==-2p[3] e1[t],

e2’[t] ==2p[3](e1[t]- e2[t]),

i1’[t] ==2p[3] e2[t]- 2p[2] i1[t],

i2’[t] ==2p[2](i1[t]- i2[t]),

Rt’[t]==i1[t]+i2[t],

e1[0]==1,

e2[0]==0,

i1[0]==0,

i2[0]==0,

Rt[0]==0};

(* Find a solution, the force of infection and its derivatives *)

sol = DSolve[seeiirEqs,{e1[t],e2[t],i1[t],i2[t],Rt[t]},t];

la = FullSimplify[p[1] (i1[t]+i2[t])/.sol[[1]]]

dla = Table[FullSimplify[D[la,p[k]]],{k,1,3}]

ddla = Table[FullSimplify[D[dla[[l]],p[k]]],{k,1,3},{l,1,3}]
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